Real Estate Finance Glossary of Basic Terms and Calculations

Cash flow

Gross potential income (GPI)
Effective gross income (EGI)
Net operating income
(NOI)
Before-Tax Cash Flow

The total income a property could earn if all units and commercial space were 100% occupied for an entire year

Gross potential income $=$ monthly rent X number of units X 12

Gross potential income, adjusted to reflect a reasonable vacancy rate

Effective gross income = gross potential income vacancy

Income less operating expenses
$\mathrm{NOI}=$ gross effective income - operating expenses
Net operating income less debt service
Before-tax cashflow $=\mathrm{NOI}-$ debt service
Property Value Calculations
Total asset value

Capitalization rate ("cap rate")

The total value of a piece of property, most commonly calculated by dividing NOI by an appropriate capitalization rate, essentially treating first year's net income as a perpetuity (an amount of money received forever)

Total asset value $=$ NOI $/$ cap rate
The rate of return applied to NOI to calculate a total asset value for a property. This is also used as a measure of a property's profitability:

Cap rate $=\mathrm{NOI}$ / Total asset value
Calculate cap rates by:

- Extrapolating from recent sales; or
- Calculating a "weighted average cost of capital" (below)

You can use this formula to solve for any of these variables:

Value $=\mathrm{NOI} /$ cap rate

Cap rate $=\mathrm{NOI} /$ value

$\mathrm{NOI}=$ Cap rate x value
This basic formula - NOI / Value or cost - is also referred to as "return on investment" (ROI).

Weighted average cost of capital ("WACC") or Mortgage- equity analysis to calculating a cap rate

The overall cost of financing, including a blend of debt and equity, weighted to capture the relative prevalence of each in the entity's financial structure. The weighted average cost of capital is generally used as the capitalization rate (or put differently, the cap rate should represent the weighted average cost of capital for the project)

WACC $=$ (cost of equity X percentage of equity in overall financing) + (debt annual constant X percentage of debt in overall financing)

Equity Cash provided by the owner of a property at purchase; or later on, the total value of a property minus the outstanding debt

Equity $=$ total asset value $\mathbf{-}$ debt

The annual return required for equity investment; should be comparable to returns available for investments of comparable risk (i.e., stock returns for comparably risky securities). This calculation treats return as the cash provided to the equity investor after paying all expenses and debt service.

Return on equity $\boldsymbol{=}$ Before-tax cashflow / equity invested
The amount of borrowed funds used to pay for the total asset cost

The ratio of Net Operating Income to the total funds invested (or total asset cost). Same formula as Cap Rate.

Return on Investment = NOI / Total cost or asset value

The number of years in which an investment is recovered, not taking time value of money into account. Divide the cost or investment amount by the annual savings or incremental cashflow.

Payback period $=$ cost / savings or extra cashflow per year

Breakeven occupancy \quad| The occupancy rate necessary to just cover operating |
| :--- |
| expenses and debt service; the minimal occupancy rate at |
| which you can cover your must-pay bills. |

Breakeven occupancy =
(expenses + debt service) / gross potential income

Debt Calculations

Debt-to-value ratio

Debt service

Annual constant

Debt service coverage ratio

The percentage of the total asset represented by outstanding debt. Can be calculated for total debt (including soft loans), or "hard" debt only.

Debt-to-value ratio $=$ Debt $/$ Total asset value or cost
The monthly or annual required payment to a lender, including both interest and repayment of principal

To calculate debt service in Excel, use the PMT function: \boldsymbol{i} is the monthly interest rate (annual rate divided by 12), nPer is the number of months in the amortization period (years multiplied by 12), PV is the beginning principal. You can leave FV and Type blank.

The percentage of the total original loan principal which must be paid as debt service every year. The annual constant represents payments of both interest and principal, although the relative balance of the two will change over time. The annual constant can be calculated based on the interest rate and term of the loan, and will always be greater than the interest rate.

Annual constant = annual debt service / total loan amount

To calculate the annual constant using Excel, use the PMT function: \boldsymbol{i} is the monthly interest rate (annual rate divided by 12), nPer is the number of months in the amortization period (years multiplied by 12), PV is -12. You can leave FV and Type blank.

The ratio of NOI to required debt service payments. The higher this ratio, the more "cushion" in the budget to ensure that even in negative circumstances, there will be enough cash flow from operations to repay debt

Debt service coverage ratio $=\mathrm{NOI} /$ debt service

	The debt service coverage ratio is also used by lenders to determine the maximum amount they would be willing to lend, based on NOI:
	Debt service $=$ NOI $/$ debt service coverage ratio
	Total debt = debt service / annual constant
Maximum supportable	Either: calculate loan-to-value ratio x total asset value; OR
	Use debt service coverage ratio to determine the maximum amount loan amount based on NOI:
	Maximum debt service $=$ NOI / debt service coverage ratio
	Maximum debt = max. annual debt service / annual constant
	To calculate the maximum supportable debt using Excel, use the $P V$ function: \boldsymbol{i} is the monthly interest rate (annual rate divided by 12), nPer is the number of months in the amortization period (years multiplied by 12), PMT is the maximum monthly payment amount (the annual maximum debt service divided by 12). You can leave FV and Type blank.
Amortization	The portion of debt service which goes to repay principal
	Debt service payment - interest = amortization
Positive leverage	When the cost of debt (annual constant) is less than the cost of equity
	Positive leverage: Annual constant < ROI < Return on equity
Negative leverage	
	When the cost of debt (annual constant) is higher than the cost of equity
	Negative leverage: Annual constant > ROI > Return on equity
Time Value of Money	
Discount rate or Interest rate or Hurdle rate	Any interest rate used to calculate the time value of money, determining the value today of cash flows that will be delivered in the future
Present value	The current value of a cashflow to be received at some predetermined time in the future.

To calculate present value in Excel, use the PV function: \boldsymbol{i} is the annual interest rate, $\boldsymbol{n P e r}$ is the number of years, PMT is zero, and $\mathbf{F V}$ is the future cash amount. You can leave Type blank.

Future value

Taxes and Tax Credits

Expenses (for tax
purposes)

Capital costs	Costs which, for tax purposes, are divided into portions and used to reduce net income over a series of years, rather than being subtracted from revenues in the year in which the actual cash outlay occurred. The costs of acquiring and constructing a building are capital costs, as are major repairs such as roof replacement, and the cost of durable goods such as refrigerators. Routine maintenance costs, on the other hand, are expensed.
Depreciation	The portion of capital costs used to reduce taxable income in a given year. The costs of acquiring and constructing residential buildings is depreciated over 27.5 years; the amount for a given year is determined by dividing the total depreciable cost, or "basis," by 27.5. This is known as "straightline depreciation." The cost of acquiring and constructing a commercial building is depreciated over 39 years.
Depreciable basis	Total costs which can be depreciated. The depreciable basis of a building will include all of the costs, including transaction costs, required to bring it to the point where it is ready for occupancy. Land costs are never included in depreciable basis, nor are reserves.
Book value	The book value of a property equals the original cost minus the sum of all of the depreciation which has been taken up to that point.

Book value $=$ Cost - accumulated depreciated

Taxable income from operations

Taxable profits from sale (capital gains)

Capital gains tax (taxes due on sale)

The taxable income for a piece of real estate equals total rents and other income, less operating expenses, less interest expense, less depreciation. Loan amortization (repayment of principal) and payments to replacement reserves are NOT deducted from revenues for purposes of determining taxable income.

Taxable income $=$ Revenues - operating expenses - interest expense depreciation

Or

Taxable income $=$
 Cash flow after financing + reserves + amortization depreciation

Or

Taxable income = $\mathrm{NOI}+$ reserves - interest expense - depreciation

Taxable profits from the sale of an asset, or capital gains, equal the difference between the sale price and the book value of an asset (see definition of book value above):

Capital gains = sale price - book value
Capital gains tax (or tax on sale) can be calculated by multiplying the capital gains tax rate by the capital gain (gain on sale):

Capital gains tax = capital gains tax rate x gain on sale

Equivalent to depreciable basis. Must be separated into acquisition basis (building value only) and rehab basis (construction-related costs).

Eligible tax credit basis times the lesser of the percentage of low-income units or the percentage of low-income floor space

Qualified basis = eligible basis x \% of low-income units or floor space (whichever fraction is smaller)

The maximum annual tax credits for which a project is eligible equals the qualified tax credit basis times the relevant tax credit percentage rate (" 4% " rate for tax-exempt-bondfinanced projects and building acquisition costs, and 9% for
$\left.\begin{array}{ll} & \text { new construction and rehab costs). This calculation yields the } \\ & \text { ANNUAL allocation, which will be available to investors every } \\ & \text { year for } 10 \text { years. Note that many states impose further limits } \\ \text { on maximum } 9 \% \text { awards per unit or per project. }\end{array}\right\}$
on sale that would be owed if the property were sold for the value of the outstanding debt with no additional cash:

Taxes on sale for existing debt = Capital gains tax rate x (existing debt - book (depreciated) value of property)

To calculate total cash required, divide this amount by 1 minus the capital gains tax rate:

Cash on sale $=$ taxes on sale for existing debt $\div(1-$ tax rate $)$

